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4. Hermite and Laguerre polynomials

Charles Hermite
1822-1901

4.1 Hermite polynomials from a generating function

We will see that Hermite polynomials are solutions to the radial 
part of the Schrodinger Equation for the simple harmonic 
oscillator.

Learning outcome: Derive Hermite’s equation and the 
Hermite recurrence relations from the generating fun ction.

Just like Legendre polynomials and Bessel functions, we may 
define Hermite polynomials Hn(x) via a generating function.

We could, of course, use this to derive the individual polynomials, but this is very tedious. 
It is better to derive recurrence relations. 
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Differentiate with respect to t:

Expand the terms, and put the generating function in again:

Relabel:

Equating coefficients of tn:
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Differentiate with respect to x:

Stick in g:

Relabel:

Equating coefficients of tn:



76

We can use these recurrence relations to derive the Hermite differential equation (much 
easier than Legendre’s!).

Differentiate with respect to x:

This is Hermite’s equation .
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Learning outcome: Use a generating function and rec urrence relations to find the 
first few Hermite polynomials.

Generating function:

Now use the recurrence relation, 
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Exercise : Use this series to verify the first few Hermite polynomials.

4.2 Properties of Hermite polynomials

Symmetry about x=0:

(just like for Legendre polynomials)

There also exists a specific series form:
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Exercise :

Writing                                               show that

This is Rodrigues’ equation for Hermite polynomials. 

Hint: work out                   and observe that 
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Learning outcome: Write down the Hermite polynomial orthogonality condition.

Starting from Hermite’s equation:

we proceed much the same way as we did for Legendre polynomials.

Integrate this over x from -∞ to ∞, integrating the left-hand-side by parts.

zero symmetric in
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if

We say that Hermite polynomials are orthogonal on the interval [-∞,∞] with a weighting

Equating powers of t2n gives
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Sometimes people remove the weighting by redefining the function:

Now this looks like a “traditional” orthogonality relation.

Then Hermite’s equation                                                       becomes

Exercise : For a continuous function, I can write                        .  Show that
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4.3 Hermite polynomials and the Quantum Harmonic Osc illator

Recall our earlier discussion of the time-independent Schrödinger equation. That was in 
3-dimensions, but here I will simplify to one dimension again,

,

where m is the particle mass, and E is its energy.

For the simple harmonic oscillator,                            , so the equation becomes

Notice that this looks awfully like the equation we just had on the previous slide:

Our reweighted Hermite polynomials are solutions of the Quantum Harmonic Oscillator!

Learning Outcome: Solve the quantum harmonic oscill ator in terms of Hermite
polynomials.
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Let’s write                 with                        so we get  

Comparing the two equations, we see that we have solutions,

where the normalization constant in front ensures that          , and,

the energy is given by the equation

Have you seen this somewhere before?
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You probably solved this elsewhere using ladder operators. This works (in part) because 
of the Hermite recurrence relation                                  .

Writing                                                         for simplicity (ie. set a=1 for now)

Then

This is a lowering operator . 

Exercise : Use recurrence relations to show that the operator            is a raising

operator. Can you show it using the Rodrigues’ equation?
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We have seen why                             , and how to move from one energy state to another 
using ladder operators, but we still have no reason for why n must be an integer!

Indeed, Hermite’s equation                                                       does have solutions for 
non-integer values of n.

Plugging                               into the equation, one finds a solution

which is valid for non-integer n. (This is known as a Hermite “function”.)

For integer n, this solution (or to be more precise, half of it) will truncate to give Hermite
polynomials.

For non-integer n, it does not truncate and one can show that the terms grow like .
These solutions do not satisfy the boundary condition as              , so must be 
discarded and the harmonic oscillator is quantized. 

But why is the quantum harmonic oscillator quantize d?
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4.4 Laguerre polynomials and the hydrogen atom

Edmond Laguerre
1834-1886

Learning outcome: Understand the importance of Lagu erre
polynomials to the solution of Schrodinger’s equatio n for the 
hydrogen atom.

Generating function:

Exercise : Starting from the generating function, prove the two recurrence relations 

Also, show                    and find expressions for the first 4 
polynomials.
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Following a similar method to that used for Legendre and Hermite polynomials, we can 
show that the Laguerre polynomials are orthogonal over the interval [0,∞] with a 
weighting         , i.e.

They satisfy the Laguerre equation :

and have a Rodrigues’ formula

(These results can be proven using similar methods to those used earlier for Legendre
and Hermite polynomials. If you are feeling assiduous feel free to do these as an 
exercise.)
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These are also orthogonal with

Associated Laguerre polynomials are obtained by differentiating “regular” Laguerre
polynomials (just as for Legendre).

Exercise : Show that            are solutions to the associated Laguerre equation
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Recall our investigation of the Schrödinger equation in spherical coordinates with V = V(r).

Separating                                         resulted in spherical harmonics

and a radial equation

For the hydrogen atom (that is, with          the wavefunction for an electron orbiting a 
proton), the potential is the Coulomb potential,
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To make the maths a wee bit cleaner, let’s make the following redefinitions:

,                               ,        ,                           ,  with

Then

becomes

which has solutions containing associated Laguerre polynomials,

(we regard E=0 at ∞)
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Fixing λ to be an integer n,

where                                     is the Bohr radius .

Also, hydrogen wavefunctions are,

where Nnlm is a normalization coefficient. 

Just as for the Hermite equation, solutions exist for non-integer λ-l-1 but these diverge as 
r→∞ and must be discarded. The boundary conditions quantize the energy of the 
Hydrogen atom. 

Exercise : Plug the above result into the radial equation to recover the associated 
Laguerre equation for L(ρ).
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Notice the 2n here. This is because we don’t quite have the orthogonality
condition for the associated Laguerre polynomials we had before - we have an 
extra power of ρ. This result is most easily proven with a recurrence relation,

To find the normalization coefficient we need

Finally, the electron wavefunction in the hydrogen atom is


